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Abstract

In this seven part paper, we prove the following theorem:

At least one of the following alternatives occurs for a
bipartite graph G:

" The graph G has no cycle of length 4k + 2.

" The graph G has a chordless cycle of length 4k + 2.

" There exist two complete bipartite graphs K 1, K 2 in G
having disjoint node sets, with the property that the
removal of the edges in K1 , K 2 disconnects G.

" There exists a subset S of the nodes of G with the
property that the removal of S disconnects G, where
S can be partitioned into three disjoint sets T, A, N
such that T j4 0, some node x E T is adjacent to every
node in A U N and, if ITI > 2, then IAI > 2 and every
node of T is adjacent to every node of A.

A 0, 1 matrix is balanced if it does not contain a square subma-
trix of odd order with two ones per row and per column. Balanced
matrices are important in integer programming and combinatorial op-
timization since the associated set packing and set covering polytopes
have integral vertices.

To a 0, 1 matrix A we associate a bipartite graph G(VT , VC; E) as
follows: The node sets VT and Vc represent the row set and the column
set of A and edge ij belongs to E if and only if aij = 1. Since a 0, 1
matrix is balanced if and only if the associated bipartite graph does not
contain a chordless cycle of length 4k + 2, the above theorem provides f!

a decomposition of balanced matrices into elementary matrices whose V .
associated bipartite graphs have no cycle of length 4k + 2. In Part VII \
of the paper, we show how to use this decomposition theorem to test
in polynomial time whether a 0, 1 matrix is balanced.
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1 Introduction

1.1 Balanced Matrices

This study concerns 0, 1 matrices that do not contain a square submatrix of
odd order with two ones per row and per column. 'Such matrices are called
balanced. They were first introduced by Berge J and we summarize here
their relevance in combinatorial optimization.

Given a 0, 1 matrix A with m rows and n columns, we define the polytopes
associated with the linear programming relaxation of the set packing and
covering problems as follows:

P(A) = {x E R' I x > 0; Ax < Q,

Q(A) = {y E R' I I > y _ 0; yA > 1}.

Berge [3] has shown that if A is balanced, the polytopes P(A) and Q(A)
have only integral vertices. The polytopes P(A) and Q(A) have a fractional
vertex when A is a square matrix of odd order with two ones per row and per
column. It follows that A is balanced if and only if, for every submatrix A'
obtained from A by removing some of its rows and columns, the polytopes
P(A') and Q(A') have integral vertices.

Berge and Las Vergnas [8] have shown that a matrix A is balanced if and
only if, for any submatrix A' of A, the maximum number of l's in a 0, 1
vector in P(A') is equal to the minimum number of l's in a 0, 1 vector in
Q(A'). This property is known as the Kinig property.
Let b be an n-vector of nonnegative integers. If A is balanced, Fulkerson,
Hoffman and Oppenheim [19] have shown that the following two linear pro-
grams:

max {lx 1x >0 ax < b}

min {yb I y 0 0; yA > 1}

have integral solutions with the same optimal objective function value. This
property is called the Menger property. If we define the transversal matrix
of A as the matrix T(A) whose rows are all minimal 0, 1 vectors in the poly-
tope Q(A), then Berge [6] has shown that if A is balanced, T(A) has the
Menger property. The above results show the importance of balanced matri-
ces in the study of combinatorial packing and covering problems. Balanced
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hypergraphs (or, equivalently, balanced matrices) can also be viewed as a
natural generalization of bipartite graphs. This is the motivation that led
Berge to introduce the notion of balancedness. For example, balanced hy-
pergraphs can be characterized elegantly by a bicoloring theorem, see [2].
Further results on balanced matrices can be found in [5], [7].

It follows from the definition of balanced matrices that checking balanced-
ness is in co-NP. An interesting question is whether checking balancedness
is in NP, i.e. whether there exists a "good" characterization of balanced
matrices. Also of interest is whether there exists a polynomial algorithm to
test whether a matrix is balanced. This paper gives an affirmative answer to
these questions. Note that such recognition problems have been solved for
some classes of matrices, the most notable result being that of Seymour [23]
for totally unimodular matrices.

An approach to the characterization of matrices in a given class is to
exhibit a sequence of composition operations that produce all the matrices in
the class and no other, starting from "elementary" matrices that can be easily
recognized. Seymour's [23] characterization of totally unimodular matrices,
the result of Yannakakis [25] for restricted unimodular matrices, the results
of Anstee and Farber [1], Hoffman, Kolen and Sakarovitch [22], Golumbic
and Goss [21] for totally balanced matrices and the results of Conforti and
Rao for strongly balanced matrices [12] and linear balanced matrices [13]
follow this line of argument and will be surveyed in Section 2.

1.2 Definitions and Notation

Bipartite representation of a 0, 1 Matrix

Given a 0, 1 matrix A, the bipartite representation of A is the bipartite
graph G(VT, VC; E) having a node in V r for every row of A and a node in V c

for every column of A and an edge ij joining nodes i E V r and j E Vc if and
only if the entry a0 of A equals 1. The sets V' and Vc are the sides of the
bipartition. Conversely, let G(VT , Vc; E) be a bipartite graph with no parallel
edges. Up to permutations of rows and columns, there is a unique matrix A
having G as bipartite representation. In this paper we consider properties
of a 0, 1 matrix that are invariant with respect to permutations of rows and
columns, hence we sttidy the corresponding bipartite representation. We say
that G is balanced if A is. More generally, for any property of 0, 1 matrices
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that is invariant with respect to permutations of rows and columns, we say
that G has the property if A has the property.

For S C Vr U Vc, the induced subgraph G \ S is obtained by removing
the nodes of S and all the edges that have at least one endnode in S. For
E' C E, the partial subgraph G \ E' of G is obtained by removing from G
the edges in E'. Let G' be a partial induced subgraph of G. We denote by
E(G') and V(G') its edge set and its node set. We define N(u) to be the
set of nodes adjacent to node u. For S C Vr U Vc, N(S) denotes the set of
nodes in V' U Vc \ S which are adjacent to at least one node in S.

Paths and Cycles

A path P is a sequence of distinct nodes XIr 2,... , x., n > 1 such that xixi+
is an edge of E for all 1 < i < n - 1. Nodes x, and x,, are the endnodes of
P. The other nodes are intermediate. A path having xl and xn as endnodes
is an xlx,-path. A cycle C is a sequence of nodes xI, X2,... ,x, x1, n > 3,
such that the nodes xI,x 2,.. . ,x n form a path and xI, x,, are adjacent. An
edge connecting two nonconsecutive nodes of a path or a cycle is a chord.
A chordless cycle is a hole. Let xi and x, be two nodes of P, where 1 > i.
The path x,,xi+i,... ,x is called the xcxt-subpath of P and is denoted by

P,,,. When n > 3, we denote by 5 the x 2x,,_-subpath of P. We write
P =- Xi,... X,-IIPx, II+II,...,X,, or" P = xi,.... Xi, P., , ,,Xn

For a path P (a cycle C), the edges connecting consecutive nodes of P
(of C) are called the edges of P (edges of C) and this edge set is denoted by
E(P) (E(C) respectively). The length of P or C is the cardinality of E(P)
or E(C). Paths having endnodes in the same side of the bipartition have
length congruent to 0 mod 4 or 2 mod 4. Paths having endnodes in opposite
sides of the bipartition have length congruent to 1 mod4 or 3 mod4. For the
sake of brevity, the word "congruent" will be omitted. A cycle is quad if its
length is 0 mod 4 and is unquad if its length is 2 mod 4. Hence a ipartite
graph G is balanced if and only if G does not contain an unquad tiole.

Direct Connections

Let A, B, C be three disjoint node sets such that no node of A is adjacent to
a node of B. A path P = XI, X2,'... , :,, connects A a ,, B if x, is adjacent
to at least one node in A and x, is adjacent to at I -,ast one node in B. The
path P, connecting A and B is a direct connecitn bctwccn A and B if, in



the subgraph induced by the nodes V(P) U A U B, no path connecting A
and B is shorter than P. A direct connection between A and B avoids C if
V(P) n C = 0.

Bicliques and Wheels

An induced subgraph G' of G is a biclique if V(G') n Vr $ 0, V(G') n V'

and any two nodes of V(G') in opposite sides of the bipartition are adjacent.
A wheel (H,x) is an induced subgraph comprising a hole H and a node x
not belonging to H but having at least three neighbors in H. Wheels will be
further discussed in Section 3.

Organization of the Paper and Figures

The seven parts of this study follow the definitions and notation contained

in this part. To avoid repetitions, the references for all parts can be found at
the end of this part (Part I). If, in Part II or later, we refer to Theorem 3.3 of
this part, this will be referred to as Theorem 3.3(I). Some theorems describe
a classification of subgraphs into distinct types: If, in Part II, we refer to
a node v of Type 1, according to the classification introduced in Theorem
3.3 of this part, we will refer to v as being of Type 1[3.3(I)). Figures are
numbered consecutively in each part. We use the following convention: Bold
lines represent edges and dotted lines represent paths that have length at
least one. Nodes in V' are represented by solid (black) dots and nodes in
Vr are hollow (white). A node in V which could be in either V c or V" is

checkered.

2 Classes of Balanced Graphs and Decom-
position Theorems

In the remainder, let G denote a connected bipartite graph. A set S of nodes
and edges of G is a cutset if the partial subgraph of G, obtained by removing
the nodes and the edges in S, is disconnected. In this paper, we consider
cutsets containing only edges or only nodes (edge or node cutsets) and in this

section we survey decomposition results that have been obtained for some
classes of balanced bipartite graphs.



Figure 1: 1-join decomposition

2.1 Decompositions with Edge Cutsets

1-Joins

Let KBD be a biclique with the property that its edge set E(KBD) is a
cutset and no connected component of G \ E(KBD) contains both a node
of B and a node of D. Note that, since G is connected, every connected
component of G \ E(KBD) contains either a node of B or a node of D. Let
VB be the set of nodes belonging to the components with at least one node
in B. Similarly, let VD be the set of nodes belonging to the components with
at least one node in D. Let G' and G'D be the subgraphs induced by VB and
VD respectively. The blocks of G \ E(KBD) are the graphs GB, GD obtained
from G', G' respectively by adding to G' a node d adjacent to all nodes in
B and to G' a node b adjacent to all nodes in D, as in Figure 1.

The set E(KBD) forms a 1-join if neither of the blocks GB and GD co-
incides with G. This concept was introduced by Cunningham and Edmonds
[18] and corresponds to a 2-sum in the 0, 1 matrix having G as its bipartite
representation, see [231.

Theorem 2.1 Let GB, Go be the blocks of the decomposition of G with a
1-join E(KBD). Then G is balanced if and only if both GB, GD are balanced.

Proof: Since GB,GD are induced subgraphs of G, the "only if' part is
obvious. Furthermore, since the edge set of a 1-join belongs to a biclique,
every hole of length greater than 4 in G belongs to GB or to GD. This proves
the "if' part. 0

Definition 2.2 A bipartite graph is strongly balanced if every unquad cycle
has at least two chords.



It is obvious from the definition that every strongly balanced bipartite graph
is balanced. In fact, it can be shown that a strongly balanced bipartite graph
is totally unimodular, see [12]. Conforti and Rao [12] prove the following
decomposition theorem for strongly balanced bipartite graphs:

Theorem 2.3 In a strongly balanced bipartite graph G, let uv and xy be two
chords of a shortest unquad cycle C, where u,x E Vr and v,y E VC. Then
x is adjacent to v and y is adjacent to u and the edge set of every maximal
biclique containing nodes u, v, x, y is a 1-join of G.

2-Joins and Strong 2-Joins

The concept of 2-join is related to the 3-sum operation [23] for a 0, 1
matrix and was introduced by Cornu~jols and Cunningham [171 for general
graphs. Here we discuss 2-joins in a bipartite graph G. Let KBD and KEF
be two bicliques of G where B, D, E, F are disjoint node sets and neither
E(KBD) nor E(KE,.) is an edge cutset of G. Further assume that no con-
nected component of G \ E(KBD) U E(KEF) has a node in B and one in
D, or a node in E and one in F. Then, we can assume w.l.o.g. that every
component of G\ E(KBD) U E(KEF) contains either a node of B and a node
of E or a node of D and a node of F. Let G' be the union of the components
of G \ E(KBD) U E(KEF) containing a node of B and a node of E. Similarly,
let G' be the union of the components of G \ E(KBD)U E(KEF) containing a

node of D and a node of F. The block G is constructed from G' as follows:

" Add two nodes d and f, connected respectively to all nodes in B and
to all nodes in E.

" If node set B U E does not induce a biclique, let P2 be the length of
a shortest path in G2 connecting a node in D to a node in F. If the
length of P2 is 0 mod4, nodes d and f are connected by a path of length
4 in G1. If the length of P2 is 1 mod 4, nodes d and f are adjacent
in G1. If the length of P2 is 2 mod4 (3 mod 4), nodes d and f are
connected by a path of length 2 (3). Denote this path by Pdf.

" If node set B U E induces a biclique, no path connecting nodes d and
f is added in G1 .



Figure 2: 2-join and strong 2-join

The block G2 is defined analogously from G. The set E(KBD)UE(KEF)

is a 2-join if G is distinct from both G 1,G 2 . If the set B U E or D U F
induces a biclique, the 2-join is said to be strong. Figure 2 shows both types
of 2-joins. Let G be a bipartite graph having a 1-join or a 2-join. An induced
subgraph G" of G is separated by the 1-join or the 2-join if neither block
contains G*.

Theorem 2.4 Let G1 , G2 be the blocks of the decomposition of the bipartite
graph G by a 2-join E(KBD) U E(KEp). Then G is balanced if and only if
both G1 and G2 are balanced.

Proof: It follows from the definition of the blocks of a 2-join that if G is
balanced, then G1 and G2 are balanced. To prove the other direction, assume
that G is not balanced but G1 and G 2 are balanced.

Let H be an unquad hole of G. If H contains no edge of G', there exists
a hole in G, having length IHI. The same argument holds for G'j.

Let H = b',d',Q2 ,f',e',Qj,b' where b' E B, d' E D, e' E E, f' E F be
an unquad hole of G, see Figure 3.

At least one of the sets B U E, D U F does not induce a biclique, else H
has length 4, a contradiction. If the node set B U E induces a biclique and
D U F does not, a hole H' of the same length as H belongs to G 2.

Hence the 2-join is not strong. Since G, contains no unquad hole, the
length of PdJ is not congruent to the length of Q2 modulo 4. It follows that
G 2 contains a chordless path P2 connecting a node d" E D to a node f" E F
whose length is not congruent to the length of Q2.

The holes H1 = d", P2 , f", e, Pb, b, d" and H 2 = d', Q2, f', C, Pb, b, d' have
distinct lengths modulo 4. Hence one of them is unquad, contradicting the
fact that G 2 is balanced. 0
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Figure 3:

Definition 2.5 A bipartite graph is restricted balanced if it has no unquad
cycle.

It follows from the definition that every restricted balanced bipartite graph
is strongly balanced. We define a bipartite graph to be basic if all the nodes
in Vr or Vc have degree at most two. Testing whether a bipartite graph is
basic amounts to testing whether a graph is bipartite, see [251. Restricted
balanced graphs have been studied by Commoner [9] and Yannakakis [25]
has proven the following decomposition theorem:

Theorem 2.6 Let G be a restricted balanced bipartite graph which is not
basic. Then either G has a cuttnode or G has a 2-join consisting of two edges
bd and ef.

An algorithm for testing whether a bipartite graph is restriced balanced fol-
lows from this theorem, see [25]. Conforti and Rao [12] give an algorithm
to test whether a graph is restricted balanced that does not use any decom-
position. In this study, we prove decomposition theorems for graphs that
are balanced but have unquad cycles. Hence we consider restricted balanced
bipartite graphs as building blocks of our decompositions.

Definition 2.7 A bipartite graph is lolally balanced if every hole has length
4.

Totally balanced bipartite graphs arise in location theory and were the
first balanced bipartite graphs to be the object of an extensive study. Several
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Figure 4: A bisimplicial edge

authors (Golumbic and Goss [20], Golumbic [21], Anstee and Farber [1] and
Hoffman, Kolen and Sakarovitch [22] ) have given properties of these graphs.

Definition 2.8 An edge uv is bisimplicial if either u or v has degree 1 or
the node set N(u) U N(v) induces a biclique.

Figure 4 shows a bisimplicial edge. Note that if uv is a bisimplicial edge
and nodes u and v have degree at least 2, then G has a strong 2-join formed
by the edges adjacent to exactly one node in the set {u,v}. The 2-join is
strong since N(u) U N(v) \ {u, v} induces a biclique.

The following theorem of Golumbic and Goss characterizes totally bal-
anced bipartite graphs, see [201.

Theorem 2.9 A totally balanced bipartite graph has a bisimplicial edge.

2.2 Decompositions with Node Cutsets

Let S C V(G) be a node cutset of G and G', G,..., G" be the connected
components of G \ S. The block G, is the graph induced by V(G') U S. We
say that an induced subgraph G" is separated in G \ S if no block contains
G*.

Extended Stars

Definition 2.10 An extended star S = (x; T; A; N) is defined by disjoint
subsets T, A, N of V(G) and a iiod .x E T such that A U N C N(x) and the
node set TU A induces a bicliquc. If ITI > 2, then JAI > 2. An extended star
cutset is one where T U A U N is a iiodc cutset.
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N A

Figure 5: An extended star

Figure 5 shows an extended star. Since the nodes in T U A induce a
biclique, an extended star cutset with N = 0 is called a biclique cutset.
An extended star cutset having T = {r} is called a star cutset, since it is
composed by a node x and a subset of its neighbors. Note that a star cutset is
a special case of a biclique cutset. The following theoreim shows the relevance
of biclique cutsets for a class of bipartite graphs.

Theorem 2.11 Let G be a bipartite graph not containing any whcel and let
KBD be a biclique cutset of G. Then G is balanced if and only if all the blocks
of G \ (B U D) are balanced.

Proof: The "only if' part is obvious, since the blocks are induced subgraphs
of G.

To prove the "if' part, assume G is not balanced but all the blocks of
G\ (BUD) are. Let H be ini unquad hole of G. At least two nonconsecutive
nodes of H, say vi and v2 , belong to BUD, else H is contained in some block.
Furthermore nodes vi and v, belong to the same set, else H has a chord.
Assume w.l.o.g. that vi, vi E B. Let tv be any node in D. If w G V(H), then
wov and Zt', 2 are edges of H and H contains no other node of BuD, else H has
a chord. Now, it follows that H is contained in some block, a contradiction.
So w V(tt). Assume that w has no neighbor in V(H) other than nodes
v,, v., and let P1 , P2 be the two subpaths of H, connecting v, and v,. Then
the holes HI = Vi, w, v,, PI, vi and H2 - z,, , J, P2 , vi have opposite parity
and each one belongs to a block, a contradiction to the assumption that all
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i Restricted

Figure 6: Classes of balanced matrices

blocks are balanced. Hence w has at least three neighbors in H, and (H, w)
is a wheel. 0

Definition 2.12 A bipartite graph is linear if it does not contain a cycle of
length 4.

It follows from the definition that G is linear and totally balanced if and
only if G is a forest and Theorem 2.3 implies that a strongly balanced linear
bipartite graph is restricted balanced.

Note that an extended star cutset (x; T; A; N) in a linear bipartite graph
is always a star cutset since ITI = 1. Conforti and Rao [13] prove the following
decomposition theorem for balanced linear bipartite graphs:

Theorem 2.13 Let uv be thc uniqut chord of an unquad cycle C in a bal-
anced linear bipartite graph G . Thrn nodes u and v belong to a star cutset of
G, separating C.

This theorem has been used in [16] to give a polynomial algorithm to test
whether a linear bipartite graph is balanced.

The above figure shows the Venn diagram for the classes of balanced
matrices that have been defined in this section.
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Figure 7: A 3-path configuration and a wheel

3 Configurations and a Theorem of Tr-uem-
per

A configuration is an induced subgraph of G. Given a configuration E2 of G,
we say that G contains E2 and we indicate with E(E2) and V(>2) its edge set
and node set. A node v iZ V(>2) is strongly adjacent to E2 if IN(v)flV(Y2)I > 2.
We say that a strongly adjacent node v is a twin of a node x E V(>2) relative
to E if N(v) n V(E) = N(x) n 1(E).

3-Path Configurations

Let uv be two nonadjacent nodes in opposite sides of the bipartition.
A 3-path configuration connecting u and v, denoted by 3PC(u, v), is defined
by three chordless paths P1, P2 , P3 connecting u and v, having no common
intermediate nodes and such that the subgraph induced by the nodes of these
three paths contains no other edge than those of the paths. Figure 7(a) shows
a 3PC(u,v).

Wheels

A wheel, denoted by (H, x) is defined by a hole H and a node x V(H)
having at least three neighbors in H. Node x is the center of the wheel, see
Figure 7(b). Let x i , x2,..., x, be the nodes in N(x) n V(H). An edge xx, is
a spoke of (H, x). If n is even, (H, x) is an even wheel, otherwise (H, x) is an
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odd wheel. Two nodes xi, xj are consecutive if one of the two xjxj-subpaths
of H contains no intermediate node in N(x). A subpath with this property is
a sector of (H, x). Two sectors are adjacent if they have a common endnode.
A bicoloring of (H, x) is an assignment of colors to the intermediate nodes of
the sectors of (H, x) so that nodes in the same sector have the same color and
nodes of adjacent sectors have opposite colors. Note that (H, x) is bicolorable
if and only if (H, x) is an even wheel.

Signing Graphs and a Theorem of Truemper

The signing of a graph G is the assignment of weights +1, -1 (positive
and negative weights) to the edges of G. A signed bipartite graph G is
balanced if, for every hole H of G, the sum of the weights of the edges in H is
0 mod 4. A 0, +1, -1 matrix is balanced if the corresponding signed bipartite
graph is balanced.

A bipartite graph G is signable to be balanced if there exists a signing of
its edges so that the resulting signed graph is balanced.

Remark 3.1 Since cuts and cycles of a graph G have even intersection, it
follows that if G is signed to be balanced, then the graph G', obtained by
switching signs on the edges of a cut is also signed to be balanced. This
implies that all the edges of a given spanning tree of G can be assumed to
be signed positive since for every edge uLv of a spanning tree there is a cut
containing uv and no other edge of the tree.

Since paths P1, P2, P3 of a 3PC(u, v) are of length 1 mod 4 or 3 mod 4 a
3PC(u, v) is not signable to be balanced. Consider a wheel (H, x) which is
signed to be balanced. By Remark 3.1, all spokes of (H, x) can be assumed
to be signed positive. This implies that the sum of the weights of the edges
in each sector is 2 mod4. Hence (H,x) must be an even wheel. The following
important theorem of Truemper [24] characterizes the bipartite graphs that
are signable to be balanced:

Theorem 3.2 A bipartite graph G is signable to be balanced if and only if

G does not contain an odd wheel or a 3-path configuration.

Remark 3.1 implies that if G is signable to be balanced, one can sign it
with the foilowing signing algorithm:
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Choose a spanning tree T, sign its edges positive and recursively choose
an edge uv which closes a hole H of G with the previously chosen edges, and

sign uv so that the sum of the weights of the edges in H is 0 mod 4.
Hence, an algorithm to test whether a bipartite graph G is signable to be

balanced can be used to test whether G is balanced, as follows:
Apply the signing algorithm to G and reject G as not being balanced if

an edge is signed negative. Now test whether G is signable to be balanced.
If it is, then G is balanced. If not, then G is not balanced.

Another way of testing balancedness of G using an algorithm to test
whether a graph is signable to be balanced is to construct G' by adding to G
a node u in V' adjacent to all the nodes of G in Vc. Then G' contains an odd
wheel (H, u) if and only if H is an unquad hole of G. No 3-path configuration
of G' can contain node u. Therefore G' is signable to be balanced if and only
if G is balanced.

Cycles with a Unique Chord

Let C be a cycle with unique chord uv, and let H1 , H 2 be the two holes in
C, containing edge uv. The strongly adjacent nodes to C have been studied
in [13]. We report here the main result and give a proof that holds for

bipartite graphs that are signable to be balanced.

Theorem 3.3 Let C be a cycle with a unique chord uv and let H1 and H 2

be the two holes of the graph induced by V(C). Let x be a node, strongly
adjacent to C. Then x is of one of the following types:

Type 1 The set N(x) is contained in V(H 1 ) or in V(H 2).

Then IN(x) n V(C)l is even.

Type 2 The set N(x) is not contained in V(H i ) or in V(H 2) and N(x) n

Then IN(x) n V(Hi)I and IN(x) n 1'(H 2)I are even.

Type 3 The set N(x) is not coidai,,cd in V(H,) or V(H 2 ) and N(x) n

{u, III = 0.

Then either IN(x)nV(H) is even and IN(x)nV(H2 )= 1 or IN(x)n
V(H 2)I is even and IN(x) n V(I1,)J = 1. Furthermore the unique neigh-
bor of x in H1 or H2 is adjaccnt to u or v.

16
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Figure 8: Parachutes

Proof: If, for i = 1 or 2, N(x) is contained in V(Hi), then IN(x) nl V(C) is
even, else (Hi,,x) is an odd wheel. This yields the nodes x of Type 1.

If N(x) is not contained in V(fl 1 ) or 11(H2 ) atnd x is adjacent to u or v,
then I N(x) nl V(H1 ) I is even for i = 1, 2, else (Hi, x) is an odd wheel. This
yields the nodes x of Type 2.

If N(x) is not contained in V(Hl) or 1V(H 2 ) and x is not, adjacent to u
or v, then assume w.l.o.g. that u E 17' and x E V'.

Case 1 IN(x) nl V(H 1 )I or IN(x) n 1'(H2)f is even.
There is a 3PC(u, x) unless :r has a unique neighbor adjacent to v in

V(Hi) or in V(H 2). This yields nodes x' of Type 3.
Case 2 N(x)fV(Hi)1 = for ?'= 1,2.
If both neighbors of x in V(H) are adjacent to v, then there is a wheel

with three spokes centered at v. If one neighbor of x in V7(C), say y, is not
adjacent to v, then there is a 3PC(y, v). 0

Parachutes

A parachute, denoted by Par(T, P1, P2 , Al, is defined by four chordless
paths of positive lengths, T = ,2; z~ P1 = V1 , . . ., Z; P2 =V2 , . - . , Z; M =

v,...,z, where (VI, t)2 , v, z) are distinct nodes, and two edges v 1 and V172
called the spokes. No other edge exists in Par(T, P1, P2, M), except the ones
mentioned above, see Figure S. Furthermore IE(P1 )l + IE(P2 )I > 3. This
implies that a parachute contains a cycle with a unique chord. Node 1 is the
center node, nodes 7e, 2 are the side nodcs and node z is the hottom node.
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Figure 9: Connected squares and goggles

Note that if G is balanced then nodes v, z are on the same side of the bi-
partition, else the parachute contains a 3PC(v, z) or an odd wheel (H, v) with
three spokes. A parachute has long top if IE(T)I 4, long sides if IE(P1)I >_ 2
and JE(P 2)1 _ 2, one short side if either IE(P)I = 1 or IE(P 2)I = 1 and short
middle if IE(M)I _< 2. Figure 8(a) shows a parachute with long sides and
short top and Figure 8(b) shows a parachute with long top and short side.

Connected Squares and Goggles

Connected squares, denoted by CS(P, P2, P3 , P4), are defined by four chord-
less paths of positive lengths P = a,..., b; P2 = c,..., d; P3 = e,..., f; P4 =

g..., h, where nodes a and c are adjacent to both e and g and b and d are
adjacent to both f and h, as in Figure 9(a). No other adjacency exists in
the connected squares. Note that node a has the same sign as b, else the
connected squares contain a 3PC(a,b) or, if IE(P 1)I = 1, an odd wheel with
center a. Therefore the nodes a, b, c, d are in one side of the bipartition and
e, f, g, h are in the other. Note that connected squares that can be signed to
be balanced contain a parachute with long sides and short top.

Goggles, denoted by Go(P, Q, R, S, T), are defined by a cycle C = h, P, x,
a, Q, v, R, b, u, S, h, with two chords ua and xb, and chordless paths P, Q, R, S
of length greater that one, and a chordless path T = h,...,v of length at
least one, such that no intermediate node of T belongs to C. No other edge
exists, connecting nodes of the goggles, see Figure 9(b).

18



4 Decompostion Theorems for Balanced Bi-
partite Graphs

In this section we introduce the main decomposition theorem obtained in
this paper and we summarize the intermediate results that are used in its
proof. We first introduce the following classes of graphs:

" Wheel-free balanced bipartite graphs are those which do not contain
wheels.

" WP-free balanced bipartite graphs are those which do not contain
wheels or parachutes.

In Part II, we study WP-free graphs and prove the following theorem:

Theorem 4.1 Let G be a VP-free balanced bipartite graph. Then either G
is strongly balanced or there exists a cycle C with unique chord uv, and a
strong 2-join, E(KBD) U E(KEF), separating C, where the node set B U E
induces a biclique containing edge uv.

In Part III, we study cutsets separating parachutes in wheel-free balanced
bipartite graphs and we prove the following theorems:

Theorem 4.2 Let G be a wheel-free balanced bipartite graph not contain-
ing parachutes with long sides. Then, either G is W1P-free or G contains a
parachute H with spokes vtv, Z'' 2 and one short side, such that H is separated
by an extended star cutset (x; T; A, N), where x = v and v1 , t'2 E A.

Theorem 4.3 Let G be a wheel-free balanced bipartite graph containing at
least one parachute with long sides and long top. Then G contains a parachute
H with spokes vvi, vV2 and long sides, such that H is separated by an extended
star cutset (x; T; A; N), where x = t and vli, v2 E A.

Theorem 4.4 Let G be a wheel-free balanced bipartite graph containing at
least one parachute with long sides, short top and short middle. Then G
contains at least one of the following:

* A parachute H with spokes vt'v, v, 2 , long sides and short middle, such
that I is separated by an extended star cutset (x; T; A; N), where x = v
and V1 , V 2 E A.
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* Connected squares.

Theorem 4.5 If a wheel-free balanced bipartite graph G contains a parachute
H with long sides, short top, long middle and spokes vvj , vv 2 , then G contains

at least one of the following:

" An extended star cutset (x; T; A; N), where x = v and v1 , v2 E A,
separating the parachute H.

" A parachute with long sides and long top.

* A parachute with long sides, short top and short middle.

" Connected squares.

" Goggles.

Part IV studies cutsets in wheel-free balanced bipartite graphs containing
connected squares. The following is the main result:

Theorem 4.6 Let G be a wheel-fre balanced bipartite graph containing con-
nected squares. If G has no biclique cuiset, then G contains a 2-join separat-
ing V(P 1 )UV(P 2 ) from V(P 3 )UV(P4 )for some connected squares CS(P, P 2 ,
P3, P4 ).

Part V studies wheel-free balanced bipartite graphs containing goggles:

Theorem 4.7 Let G be a wheel-free balanced bipartite graph containing gog-
gles. If G contains no parachute with long sides and long top, no parachute
with long sides, short top and short middle, and no connected squares, then
either G contains an extended star cutset or G contains a 2-join separat-
ing V(P) U V(S) \ {h} from V(Q) U V(R) U V(T) \ {h} in some goggles
Go(P,Q, R,S,T), where {h} = V(P) n1 V(Q).

Part VI contains the following decomposition result.

Theorem 4.8 Let G be a balanced bipartite graph containing wheels. Then
C hai an extended star cutset (x; T; A; /V) and a wheel (H, v) such that the
extended star cutset separates the sectors of (H, v) of opposite colors, where
x = v, and IN(,,) n V(H) n Al > 2.
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All these theorems imply tile following:

Theorem 4.9 Let G be a balanced bipartite graph which is not restricted
balanced. Then G has a 1-join, or a 2-join, or an extended star cutset.

In all proofs of the results contained in this paper, we only use the fact
that a balanced bipartite graph contains no hole of length 6, no odd wheel and
no 3-path configuration.

Definition 4.10 A bipartite graph G is said to be weakly balanced if G con-
tains no odd wheel, no 3-path configuration and no hole of length 6.

Balanced bipartite graphs are weakly balanced and weakly balanced bi-
partite graphs are signable to be balanced.

Hence Theorems 4.1-4.9 hold even when substituting the word "balanced"
with the word "weakly balanced", given appropriate extensions of the con-
cepts of strongly balanced and restricted balanced bipartite graphs, as fol-
lows:

Definition 4.11 A bipartite graph is said to be signable to be restricted bal-
anced if it contains no 3-path configuration and no cycle with at least one
chord.

A bipartite graph is said to be signable to be strongly balanced if it contains
no 3-path configuration and no cycle with a unique chord.

Since a 3-path configuration or a cycle with at least one chord implies the
existence of an unquad cycle, a restricted balanced bipartite graph is also
signable to be restricted balanced. It. follows from Definitions 2.2 and 4.11
that every strongly balanced bipartite graph is also signable to be strongly
balanced. Testing whether a bipartite graph belongs to either of these two
classes can be done in polynomial time. We outline an algorithm for testing
whether a graph is signable to be restricted balanced in the proposition below.
Testing whether a bipartite graph is signable to be strongly balanced can be
done with a similar algorithm.

Propositon 4.12 Testing whether a bipartite graph G is signable to be re-
stricted balanced can be done in polynomial time as follows: Apply the signing
algorithm to G. Let G' be the resulting signed graph. Apply the algorithm
in [12] to G' to test the existence of a cycle whose edge weights add up to
2 mod4. If such a cycle exists, thui G is not signable to be restricted balanced.
Otherwise G is signable to be restricted balanced.
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Proof: First assume that G is signable to be restricted balanced. Since G
is signable to be balanced, G' is a signed balanced graph. Since every cycle
of G is a hole, G' does not contain a cycle of length 2 mod 4.

If G is not signable to be restricted balanced, the existence of a 3-path
configuration or of a cycle with at least one chord implies that every signing
of G has a cycle of length 2 mod 4. 0

The following theorem extends Theorem 4.9:

Theorem 4.13 Let G be a weakly balanced bipartite graph which is not
signable to be restricted balanced. Then G has a 1-join, or a 2-join, or an
extended star cutset.

5 Decomposition Theorems for Bipartite
Graphs that are Signable to be Balanced

The class of bipartite graphs that are signable to be balanced properly con-
tains the class of bipartite graphs that are signable to be totally unimodular
(i.e. the nonzero entries of the corresponding 0,1 matrix can be signed so
that the resulting matrix is totally uninmodular, see [23]).

Our results in Parts 1I-V of this series are given in terms of bipartite
graphs that are signable to be balanced. To state the results, we need to
introduce the following configurations:

Let R 2, n > 3, be a graph defined by a cycle C = XI, X 2 ,... , X2,, XI with
chords xixi+n, 1 < i < n. Note that R 2 n is bipartite when 72 is odd. Figure
10 shows RI0 . The graph 6 is a biclique, hence it is balanced. Any graph
R2,, n > 7, contains an odd wheel, hence it is not signable to be balanced.

However the graph RI0 of Figure 10 does not contain an odd wheel, a 3-
path configuration and each edge belongs to a 6-hole. Hence Ri0 is signable to
be balanced but it is not balanced. Furthermore Ri0 has no 1-join, no 2-join,
and no extended star cutset. This shows that the decomposition theorem 4.9
cannot be extended to the class of bipartite graphs that are signable to be
balanced.

A connected 6-hole, see Figure 10. is defined by a hole H = hl, h2, h3, h4,

h5 , h6 , paths P, I < i < 6, where P, connects t to hi for i odd and b to hi

for i even. The two endnodes of each path P, are in the same side of the
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Figure 10: The RI0 and connected 6-hole configurations

bipartition and there are no other edges in the connected 6-hole than those
described above.

In Part II we prove the following theorem:

Theorem 5.1 Let G be a 14P-free bipartite graph which is signable to be
balanced but not signable to be strongly balanced. Then G contains a cycle
C with unique chord uv, and a strong 2-join, E(KBD) U E(KEF), separating
C, where the node set B U E induces a biclique containing edge uv.

The results contained in Parts Ill-V imply the following theorem:

Theorem 5.2 Let G be a wheel-free bipartite graph which is signable to be
balanced but not signable to be strongly balanced. If G contains no RIO and
no connected 6-hole, then G contains a 2-join or an extended star cutset.

These theorems will be used in [11] to prove a decomposition result for all
wheel-free bipartite graphs that are signable to be balanced. In part VI of this
series, the wheel theorem 4.8 is stated in terms of balanced bipartite graphs.
Figure 11 exhibits two configurations that are signable to be balanced but
are not balanced, showing that Theorem 4.8 does not hold in the present
form for bipartite graphs that are signable to be balanced. In [111 a wheel
theorem for bipartite graphs that are signable to be balanced is proved.
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Figure 11:

6 Some Conjectures and Open Questions

The following conjecture has been formulated in [13]:

Conjecture 6.1 Every balanced bipartite graph G has an edge uv with the
property that the partial graph, obtained from G by removing the edge uv,
remains balanced.

This conjecture is obviously equivalent to the following:

Conjecture 6.2 Every balanced bipartite graph contains an edge which is
not the unique chord of a cycle.

Note that every edge of the graph R10 is the unique chord of a cycle
of length 8, hence the above conjecture cannot be extended to the class of
bipartite graphs that are signable to be balanced. (Note that a cycle with
a unique chord in a bipartite graph that is signable to be balanced can be
quad, but every cycle with a unique chord in a balanced bipartite graph
must be unquad). However, we believe that the above graph may be the
only exception, and we propose the following conjecture:

Conjecture 6.3 The graph RIO is the only bipartite graph which is signable
to be balanced and has the property that every edge is the unique chord of a
cycle but has no 1-join, no 2-join and no extended star cutset.
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Figure 12: A W4"pq configuration

As shown in Section 2.2, a biclique cutset is a special case of an ex-
tended star cutset, hence the question arises whether Theorem 4.9 can be
strenghthened, by showing that every bipartite graph that is balanced but
not restricted balanced has a 1-join or a 2-join or a biclique cutset.

Conjecture 6.4 Every wheel-free balanced bipartite graph which is not re-
stricted balanced has a 1-join or a 2-join or a biclique cutset.

Note that Theorem 4.6 proves the above conjecture if G contains con-
nected squares. The graph in Figure 12 shows that this conjecture cannot
be extended to all balanced bipartite graphs.

More generally, we define an infinite family of graphs as follows.
Let H be a hole where nodes t 1,...,ua, .. , w,. . . , WP, -... ,Xq

appear in this order when traversing H, but are not necessarily adjacent.

Let Y = {yi,..., yp} and Z = {ZJ . Zq} be two node sets having empty
intersection with V(H) and inducing a biclique Kyz. Node y, is connected
to u, and wv, for 1 < i < p. Node zi is connected to v, and x, for 1 < i < q.
Any balanced bipartite graph of this form for p,q > 2 is denoted by Wpq.
For all values of p,q _> 2, the graphs lt'pq have no 1-join, no 2-join and no
biclique cutset.

Since the graphs Wpq contain a wheel, a stronger form of the above con-
jecture is the following.

Conjecture 6.5 Every balanced bipartite graph which is not restricted bal-
anced is either Wpq or has a 1-join, a 2-join or a biclique cntset.
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7 Efficient Algorithms

A node cutset S C V is a double star cutset if there exist two adjacent nodes
u,v E V such that S = N(u) U N(v).

Part VII gives a polynomial algorithm to test whether a bipartite graph
is balanced. This algorithm uses the following corollary of Theorem 4.9"

Corollary 7.1 Let G be a balanced bipartite graph which is not restricted
balanced. Then G has either a 1-join, or a 2-join, or a star cutset or a
double star cutset.

Neither this corollary nor Theorem 4.9 gives a sufficient condition for a
bipartite graph G to be balanced when the blocks of the decomposition of G
are balanced.

To overcome this problem, out recognition algorithm creates a polynomial
number of induced subgraphs of G with specific properties and tests each one
of them for balancedness. This family of subgraphs is such that G is balanced
if and only if all blocks produced in the various decompositions are balanced.
However, this process has a polynomial running time of high degree. It would
be interesting to design better algorithms by using Theorems 4.1-4.8 directly
instead of Corollary 7.1.
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